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A simple approach to energy conserving boundary conditions using exact symmetries is
described which is especially useful for numerical simulations using the finite difference
method. Each field in the simulation is normally either symmetric (even) or antisymmetric
(odd) with respect to the simulation boundary. Another possible boundary condition is an
antisymmetric perturbation about a nonzero value. One of the most powerful aspects of
this approach is that it can be easily implemented in curvilinear coordinates by making
the scale factors of the coordinate transformation symmetric about the boundaries. The
method is demonstrated for magnetohydrodynamics (MHD), reduced MHD, and a hybrid
code with particle ions and fluid electrons. These boundary conditions yield exact energy
conservation in the limit of infinite time and space resolution. Also discussed is the inter-
pretation that the particle charge reverses sign at a conducting boundary with boundary
normal perpendicular to the background magnetic field.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

A particular set of boundary conditions can have an important effect on the results of plasma simulations [11,3,25,26]. An
important class of boundary conditions is that of energy conserving boundary conditions. Energy conserving boundary con-
ditions are sometimes appropriate for laboratory plasmas [2]. Energy conserving boundary conditions are not ideal for all
problems. For instance, in simulation of space plasmas, it is often desirable for energy to radiate out of the system simulating
an open boundary [12,14,5]. But it is difficult to find boundary conditions that let all of the various wave modes escape out of
the simulation region, and such boundary conditions are often much less stable than energy conserving boundary conditions.
Typically when numerical codes ‘‘blow up” (that is, values of quantities get very large), it happens in such a way that the
computational energy grows. Related to this, the most stable boundary conditions are typically energy conserving. For some
. All rights reserved.

Denton).

mailto:rdjcp@rdenton.fastem.com
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


4824 R.E. Denton, Y. Hu / Journal of Computational Physics 228 (2009) 4823–4835
applications, such as the study of Alfvén waves that are guided along the magnetic field, the boundary condition across the
magnetic field should not matter, and an energy conserving boundary condition may be convenient. Finally, energy conser-
vation is one of the best tests of a numerical code, and energy conserving boundary conditions make it easier to check that
the total simulation energy is constant.

Here, we demonstrate a simple method to determine and implement energy conserving boundary conditions using sym-
metries about the boundaries. The boundary conditions appropriate for Cartesian coordinates can be used for curvilinear
coordinates if the scale factors describing those coordinates are taken to be symmetric about the boundary. We illustrate
our method for several different sets of plasma physics equations. While not all aspects of the boundary conditions we de-
scribe here are new, we believe that our clear explanation of how to implement them (which we have not found elsewhere)
will be helpful to researchers using fluid or particle simulations.

For the sake of completeness, we have included in Section 5 a description of symmetry boundary conditions for reduced
MHD. Much of this material can be found in Ref. [9]. Here we have a more complete description of the boundary conditions
for all fields (Table 4) using a notation consistent with that used in the rest of this paper.

2. Symmetry basics

In Table 1, we list the symmetries used in this paper. We use (+) to indicate that a field value is symmetric relative to a
particular boundary, and (�) to indicate that a field value is antisymmetric relative to that boundary. ‘‘Symmetric” here
means that the field is even across the boundary; that is, f ðx0 þ dxÞ ¼ f ðx0 � dxÞ, where x is the coordinate normal to the
boundary at x ¼ x0, and dx ¼ x� x0. In this case, the first derivative of f is zero at the boundary. Antisymmetry means that
the field is odd across the boundary; that is, f ðx0 þ dxÞ ¼ �f ðx0 � dxÞ, from which it is clear that an antisymmetric field
has f ðx0Þ ¼ 0. The symbol ð�Þ indicates a mixed symmetry, not purely symmetric or antisymmetric, which as we will see
is undesirable. The last three symbols in Table 1 are used only in Section 5. The notation 0 indicates that a field is identically
zero everywhere, or an operator that yields zero when acting on a field. The symbol (+0) indicates (+) symmetry, but the
value of the function turns out to be equal to zero at x0. In other words, f / c2dx2 þ c4dx4 . . . close to the boundary (the c0

coefficient of the Taylor expansion is zero). The symbol ðd�Þ indicates an antisymmetric perturbation about a constant value,
f ðx0 þ dxÞ � f ðx0Þ ¼ �ðf ðx0 � dxÞ � f ðx0ÞÞ, from which we get f ðx0 þ dxÞ ¼ f ðx0Þ � ðf ðx0 � dxÞ � f ðx0ÞÞ ¼ 2f ðx0Þ � f ðx0 � dxÞ. This
results in an inflection point with the second derivative of f equal to zero at the boundary.

These symmetries are useful for implementing boundary conditions in finite difference simulation codes. In finite differ-
ence simulations, boundary conditions are typically implemented using ‘‘buffer” or ‘‘ghost” grid points beyond the boundary.
For instance, if a boundary is at grid point i ¼ n, a zero value Neumann boundary condition (zero slope) can be implemented
by use of grid points beyond the boundary with fnþDi ¼ fn�Di, where Di ¼ i� n. Then any centered finite difference formula for
the first derivative at x ¼ xn will yield zero. For instance, the second order accurate formula for the first derivative at grid
point i; ðfiþ1 � fi�1Þ=ð2DxÞ, is equal to zero at i ¼ n if fnþ1 ¼ fn�1. While we have a finite difference method in mind (the finite
volume method is discussed toward the end of this section), these symmetries can also be useful for defining the possible
modes (sine or cosine) used in a spectral or pseudospectral method. Note that these symmetries really represent the effect
of image charges/currents/flows to give the corresponding boundary condition.

While the simplest description of the (�) and (+) boundary conditions might be that the value of a field or one of its deriv-
atives is zero at the boundary, the symmetry boundary conditions really imply more: (+) symmetry implies that all odd order
derivatives, dnf=dxn with n odd, are zero, and (�) symmetry implies that all even order derivatives, dnf=dxn with n even, are
zero. The distinction might not be all that important for a second order spatially accurate code, but for higher order schemes
(we typically use fourth order spatial differencing), it makes a difference.

To see how exact symmetries lead to energy conservation, consider the one dimensional problem for the energy E in
terms of a flux density S,
Table 1
Definiti

Symbol

(+)
(�)
ð�Þ
0
(+0)
ðd�Þ
@E
@t
þ @S
@x
¼ 0; ð1Þ
for a finite difference simulation with grid points at i = 1–N. Now assume that the first derivative at grid point i is evaluated
using a difference formula
ons of symmetry symbols.

Definition

Symmetric, f ðx0 þ dxÞ ¼ f ðx0 � dxÞ
Antisymmetric, f ðx0 þ dxÞ ¼ �f ðx0 � dxÞ [Note: f ðx0Þ ¼ 0]
Mixed symmetry, no simple relation between f ðx0 þ dxÞ and f ðx0 � dxÞ
Used to indicate a field that is everywhere identically zero
Symmetric with zero value at x0; f ðx0 þ dxÞ ¼ f ðx0 � dxÞ and f ðx0Þ ¼ 0
Antisymmetric perturbation, f ðx0 þ dxÞ � f ðx0Þ ¼ �ðf ðx0 � dxÞ � f ðx0ÞÞ
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@S
@x

����
i

¼
XM

j¼1

cj Siþj � Si�j
� �

; ð2Þ
where for our purposes the cj can have any values. For instance, the second order accurate formula has M ¼ 1 with
c1 ¼ 1=ð2DxÞ. The key point is that Eq. (2) involves an antisymmetric combination (reversed sign) of Siþj and Si�j. The total
energy,

PN
i¼1E, will be conserved if

PN
i¼1@S=@x ¼ 0. Thus for energy conservation, we want
XN

i¼1

XM

j¼1

cjðSiþj � Si�jÞ ¼ 0: ð3Þ
This sum will certainly be equal to zero if each term in the sum over j is zero, that is, if
XN

i¼1

ðSiþj � Si�jÞ ¼ 0: ð4Þ
Now consider only the left boundary at x1=2 ¼ x1 � Dx=2. Neglecting the terms at the right boundary near i ¼ N, the left term
in Eq. (4) is
XN

i¼1

Siþj ¼
XN

i¼1

Si �
Xj

k¼1

Sk: ð5Þ
For instance, for j ¼ 1, there is no S1 term coming from Siþ1 for any i ¼ 1 to N, and this has been subtracted off in Eq. (5). The
right sum in Eq. (4) is (again neglecting boundary effects at the far boundary near i ¼ N),
XN

i¼1

Si�j ¼
XN

i¼1

Si þ
Xj

k¼1

S1�k: ð6Þ
That is, there are extra terms that come from beyond the boundary at x1=2, for instance, S0 from Si�j ¼ S0 for i ¼ j ¼ 1. If we
subtract Eq. (6) from Eq. (5), we get for Eq. (4) (neglecting terms at the far boundary)
XN

i¼1

ðSiþj � Si�jÞ ¼ �
Xj

k¼1

ðSk þ S1�kÞ: ð7Þ
If S is asymmetric across the boundary at x1=2, then S1�k ¼ �Sk and Eq. (7) will yield zero so that the total energy will be con-
served. With the symmetry method, each of the fields in the model equations is defined with a consistent symmetry across
the boundary, so that if an energy equation Eq. (1) can be derived for the interior region, it will also be applicable at and
across the boundary. The net result is that the energy will be conserved to the same extent that it is in the interior, limited
only by the spatial resolution of the simulation.

If f ¼ g, the symmetry of f must be equal to that of g in order for the identity to be valid at the boundary with no discon-
tinuities. Furthermore, if f ¼ gh, the symmetry of f will be the symmetry of the product of the symmetries of g and h where
(+) acts like +1, and (�) acts like �1. That is,
ðþÞðþÞ ¼ ðþÞ; ð8Þ
ðþÞð�Þ ¼ ð�Þ; ð9Þ
ð�ÞðþÞ ¼ ð�Þ; ð10Þ
ð�Þð�Þ ¼ ðþÞ: ð11Þ
For the most part we have in mind coordinates systems that are orthogonal [1]. The numerical characteristics of such a
coordinate system are fully specified by the scale factors hk (for component direction k) that convert the change in a partic-
ular coordinate dqk to distance in real space ds through dsk ¼ hkdqk. For instance, for cylindrical coordinates r, /, and z, the
scale factors hk are 1, r, and 1, respectively. For such a coordinate system, the vector fields can be expressed in terms of the
three coordinate directions. Relative to a particular boundary, a vector quantity has three symmetries, and we indicate this
by use of a column symmetry vector. A vector with all three components symmetric would be denoted by
ðþÞ
ðþÞ
ðþÞ

2
64

3
75: ð12Þ
A derivative across a boundary has (�) symmetry. By this, we mean that the derivative operator modifies the symmetry
just as if it were a field using the rules in Eqs. (8)–(11). This can be easily understood by considering a function at x0 ¼ 0
where increasing x crosses the boundary. If the function is symmetric about x ¼ 0; f ðxÞ ¼ c0 þ c2x2 . . ., then @f=@x � 2c2x
is antisymmetric with respect to x. Therefore @=@x reverses the symmetry of the function upon which it acts and
can be thought of as having (�) symmetry. Similarly, if the function is antisymmetric about x ¼ 0; f ðxÞ ¼
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c1xþ c3x3 . . . ; @f=@x � c1 þ 3c3x2 is symmetric about the boundary. However, a gradient orthogonal to the boundary normal
has (+) symmetry. For instance, consider a field f ¼ c0 þ c1y, and note that it is symmetric with respect to x. The partial deriv-
ative with respect to y will be @f=@y ¼ c1 on both sides of x ¼ 0. Therefore, with respect to x; @f=@y is also symmetric with
respect to x, and @=@y therefore has (+) symmetry relative to the x boundary. In three dimensions, a boundary is a plane. The
orientation of the boundary can be indicated by specifying the direction normal to the boundary, n. For a boundary with
boundary normal n in the direction of the first coordinate e1 (that is, for the boundary in a plane extending in the directions
of the second and third components that is crossed when moving in the direction of the first coordinate),
$ ¼
ð�Þ
ðþÞ
ðþÞ

2
64

3
75; ð13Þ
while for the boundary with boundary normal in the direction of the second coordinate,
$ ¼
ðþÞ
ð�Þ
ðþÞ

2
64

3
75: ð14Þ
Now we can see why the symmetry boundary conditions for Cartesian coordinates can be used without modification for
generalized orthogonal coordinates, as long as the scale factors of the transformation are taken to have (+) symmetry. For
instance, from a normalized version of Ampere’s Law, J ¼ $� B, the first component of the current is in generalized
coordinates,
J1 ¼
1

h2h3

@

@x2
ðh3B3Þ �

@

@x3
ðh2B2Þ

� �
; ð15Þ
where the xk are the generalized coordinates. However, if all the scale factors hk have (+) symmetry, the overall symmetry of
the equation is not altered from that in Cartesian coordinates,
J1 ¼
@B3

@x2
� @B2

@x3
; ð16Þ
(because multiplication of a (+) symmetry quantity does not change the symmetry).
With generalized coordinates, Eq. (1) generalizes to
@E
@t
þ $ � S ¼ 0; ð17Þ
The energy integral must then include the volume element; that is, the total energy generalizes to
XN

i¼1

EiV i; ð18Þ
where Vi is the volume element associated with grid point i. Then the quantity that must equal zero for energy conservation
is
XN

i¼1

Vi$ � Sji ¼ 0: ð19Þ
Using the generalized coordinate form for $ � S,
$ � S ¼ 1
h1h2h3

@

@q1
ðS1h2h3Þ þ

@

@q2
ðS2h3h1Þ þ

@

@q3
ðS3h1h2Þ

� �
; ð20Þ
and the fact that Vi / h1ih2ih3i for evenly spaced generalized coordinates, the hk factors in front of the derivatives in Eq. (20)
cancel with Vi in Eq. (19) (apart from a constant) so that Eq. (17) takes the form of Eq. (1) across each boundary. (To preserve
the order of accuracy of the difference formulas, generalized coordinates should be evenly spaced; stretching of the dimen-
sions can be done by varying the hk.)

While we have only tested the energy conserving symmetry method for simulations using orthogonal coordinates, the
method should also work for simulations with non-orthogonal coordinates (see, e.g. Ref. [24]). A coordinate transformation
can be described by a metric tensor, gij, that upon (matrix) multiplication switches covariant and contravariant components
back and forth [13]. To apply our method, all the components of the metric tensor should have (+) symmetry.

It is essential to understand that the symmetries in an equation are totally unrelated to any ordinary signs that may ap-
pear in that particular equation. Therefore, in Faraday’s law, @B=@t ¼ �$� E, the minus sign on the right-hand side of the
equation is irrelevant for determining the symmetries of the vector quantities. Also, @=@t does not change symmetry across
a boundary, so this operator has (+) symmetry.
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A centered difference finite difference equation written in conservative form can be written in terms of fluxes F crossing
the cell boundaries (see, e.g. Ref. [28]). What we mean is that Eq. (1) can be written
DE ¼ F i�1=2 � F iþ1=2; ð21Þ
where F i�1=2 is the flux of energy crossing the grid point boundary i� 1=2 from grid point i� 1 to grid point i (integrated over
time Dt and the dimensions perpendicular to x). Eq. (21) then expresses the fact that the change in the energy is equal to the
energy flux coming in through the left boundary minus the energy flux going out through the right boundary. For instance,
consider the second order accurate finite difference representation of Eq. (2),
@S
@x

����
i

¼ Siþj � Si�j

2Dx
: ð22Þ
Using this difference formula, the energy flux is
F iþ1=2 ¼
Dt

2Dx
ðSi þ Siþ1Þ; ð23Þ
just an integrated average of the flux density S.
A formulation in terms of fluxes crossing boundaries is often called the finite volume technique, and it can be used also for

curved systems [15]. If an equation for energy is solved (Eq. (1); to solve, for instance, for a fluid pressure) and the flux of
energy from the boundary surface is set equal to zero, then the energy will automatically be conserved. Why then would
symmetry boundary conditions be useful? For one thing, it is not always practical to use an energy equation like Eq. (1).
For instance, in the LFM magnetospheric global MHD code [18], an equation for plasma energy is solved for the sum of
the kinetic and pressure energy, excluding the magnetic energy. This prevents accuracy problems in the very low plasma
beta region (region with a low value for the ratio of thermal to magnetic pressure) close to the Earth. With this scheme,
the coupling term between the plasma and fields is still J � E, and conditions on the fields will still be necessary at the bound-
ary. Having consistent symmetries across the boundary for E and B will insure that the crucial step in the derivation of en-
ergy conservation, $ � ðE � BÞ ¼ B � $� E � E � $� B, is satisfied across the boundary to the same extent that it is in the
interior.

Even if an equation for the total energy is used, it will still be necessary to define values of fields beyond the boundary if a
high order scheme is used for the calculation of the fluxes; this is because the fluxes in the interior (that are not zero) will
depend on the values outside the simulation domain (at least using ghost values beyond the boundary as is commonly done).
For instance, the LFM code uses an 8th order spatial accurate scheme that requires values 3.5 grid points away from a grid
cell boundary in order to calculate the flux. The symmetries described here are one way to evaluate the derivatives in the
finite difference equations or the fluxes in a finite volume scheme so as to preserve the order of the numerical accuracy, even
at the boundary. If the symmetries are consistent, then all the equations will be solved in a manner that is consistent with
the boundary conditions, and subsidiary relations, like adiabaticity of pressure evolution (which won’t be automatic if an
equation for total energy is used), will also be solved accurately to the greatest extend possible consistent with the grid
resolution.

In our formulation, each boundary direction is independent and the boundary symmetries are evaluated directly across
the boundary. Ref. [21] describes another interesting approach that uses inversion symmetry through the origin. Such inver-
sion symmetry could be created within our framework by a combination of symmetries at a corner of the simulation. (This is
somewhat different from Nevins et al.’s [21] technique which has inversion about the midpoint of a boundary surface.)

3. Energy conserving boundary conditions for MHD

The normalized MHD equations are
q
dv
dt
¼ �$pþ J � B; ð24Þ

@q
@t
þ $ � ðqvÞ ¼ 0; ð25Þ

@p
@t
þ c$ � ðpvÞ þ ð1� cÞv � $p ¼ ðc� 1ÞgJ2; ð26Þ

J ¼ $� B; ð27Þ
@B
@t
¼ �$� E; ð28Þ

E ¼ �v � Bþ gJ; ð29Þ
where B is normalized to the background magnetic field B0;q is normalized to the background mass density q0;v is normal-
ized to the background Alfvén speed VA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffil0q0
p

, where l0 is the permeability of free space, and p is normalized to q0V2
A.

The first step toward deriving energy conserving boundary conditions is to derive an energy equation. This is found by
dotting (24) with v, (28) with B, and adding the two resulting equations to (26). The result is
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@

@t
E ¼ �$ � S; ð30Þ

E ¼ qv2

2
þ p

c� 1
þ B2

2
; ð31Þ

S ¼ qv2

2
þ cp

c� 1

� �
v þ E � B; ð32Þ
where E is the total energy density and S is the energy flux density. To derive energy conserving boundary conditions,
we need to have S � n ¼ 0 at the boundary. (That is, aside from periodic boundary conditions, which are automatically
energy conserving given the fact that Eqs. (30)–(32) are in conservative form.) While it might be possible in principle
to have individual terms within S contribute nonzero flux across the boundary but cancel out so that the total flux across
the boundary is zero, in practice, we will need to set each term contributing to S � n equal to zero. Unless p ¼ 0 at the
boundary, it is clear that we need v � n ¼ 0. We also need ðE � BÞ � n ¼ 0. This can be accomplished with E � n ¼ 0 or
B� n ¼ 0. If n ¼ e1, where e1 is the unit vector in the first coordinate direction (that is, the boundary is crossed by mo-
tion in the direction of the first coordinate), other possible energy conserving boundary conditions are E2 ¼ B2 ¼ 0 or
E3 ¼ B3 ¼ 0.

We now assume that there is a background magnetic field in the e1 direction ðb0 ¼ B0=B0 ¼ e1Þ, and consider boundary
conditions for boundaries with n ¼ e1 and n ¼ e2. Recall that we are possibly considering curved coordinates.

3.1. Insulator boundary for boundary normal n parallel to b0

For boundary normal n ¼ e1,
$ ¼
ð�Þ
ðþÞ
ðþÞ

2
64

3
75: ð33Þ
It is natural to make q; p, and B1 � B0 symmetric across the boundary since these quantities have nonzero equilibrium values.
We require v1 ¼ v � e1 ¼ 0 to make the flux density of pressure and kinetic energy equal to zero. If there is no inherent dif-
ference between the e2 and e3 directions, that limits us to two possible conditions for the electromagnetic fields, E � n ¼ 0 or
B� n ¼ 0.

We consider first B� n ¼ 0. We call this an insulating boundary condition. As we will see, an electric field is allowed in
the plane of the boundary and no current is allowed into it, consistent with the properties of an insulator. Using the equa-
tions of MHD, Eqs. (24)–(29), we require that the symmetries of all terms on the left side of an equation be equal to the sym-
metries of all terms on the right side. Now we have
B ¼
ðþÞ
ð�Þ
ð�Þ

2
64

3
75: ð34Þ
From Ampere’s Law Eq. (27),
J ¼ $� B ¼
ð�Þ
ðþÞ
ðþÞ

2
64

3
75�

ðþÞ
ð�Þ
ð�Þ

2
64

3
75 ¼

ð�Þ
ðþÞ
ðþÞ

2
64

3
75; ð35Þ
where we mean by J ¼ ½S� that J has the ½S� symmetries. Noting that
v � $ ¼
ð�Þ
ðþÞ
ðþÞ

2
64

3
75 �

ð�Þ
ðþÞ
ðþÞ

2
64

3
75 ¼ ðþÞ ¼ @

@t
; ð36Þ
we use the momentum equation Eq. (24),
q
dv
dt
¼ �$pþ J � B ! ð37Þ

ðþÞ
ð�Þ
ð?Þ
ð?Þ

2
64

3
75 ¼

ð�Þ
ðþÞ
ðþÞ

2
64

3
75ðþÞ þ

ð�Þ
ðþÞ
ðþÞ

2
64

3
75�

ðþÞ
ð�Þ
ð�Þ

2
64

3
75; ð38Þ
to find



Table 2
Symme

Field

q; p;h1;

$

B

J

v

E
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v ¼
ð�Þ
ðþÞ
ðþÞ

2
64

3
75: ð39Þ
We use Ohm’s Law Eq. (29),
E ¼ �v � Bþ gJ !
ð?Þ
ð?Þ
ð?Þ

2
64

3
75 ¼

ð�Þ
ðþÞ
ðþÞ

2
64

3
75�

ðþÞ
ð�Þ
ð�Þ

2
64

3
75þ ðþÞ

ð�Þ
ðþÞ
ðþÞ

2
64

3
75; ð40Þ
to find
E ¼
ð�Þ
ðþÞ
ðþÞ

2
64

3
75; ð41Þ
so as we claimed earlier, there can be an electric field within the boundary ((+) symmetry for E2 and E3 in Eq. (41)), but no
current into the boundary ((�) symmetry for J1 in Eq. (35)).

These symmetries are summarized in Table 2 under the n ¼ e1 Insulator column. Using similar analysis, it is easy to verify
that Eqs. (25), (26), and (28) will all also have consistent symmetries. The authors used this boundary condition in a study of
magnetospheric toroidal (azimuthally oscillating) Alfvén waves in dipole geometry [9].

It is possible to use different but related equations such as $ � B ¼ 0 and $ � J ¼ 0 to derive some of the same results.

3.2. Hard wall perfect conducting boundary with n ¼ e1

Now we consider a perfect conductor boundary with n ¼ e1 (boundary crossed in the direction of b0). In this case the
components of E perpendicular to n will be zero, but the components of B perpendicular to n can be nonzero. The astute
reader may have noticed that for the insulator boundary, all the vectors had the symmetry of $ or that of ð�Þ$, that is,
one of the two symmetries
ð�Þ
ðþÞ
ðþÞ

2
64

3
75;

ðþÞ
ð�Þ
ð�Þ

2
64

3
75: ð42Þ
(The symmetry of the component in the direction of n was reversed from the symmetries of the other components.) This
property was necessary to make the symmetries of all the equations come out totally consistent. In the case of the conductor
boundary, the symmetries will not come out entirely consistent because the magnetic field is in the direction of n. If we try to
make B1 have (�) symmetry at the boundary, there will be large currents near the boundary that will lead to flows that erode
B1.

The best solution to this problem seems to be to require all components of E and v to be zero at the boundary. This results
in a ‘‘line tied” boundary condition. The field lines are fixed (tied down) at the boundary because the components of v per-
tries for energy conserving boundary conditions in MHD.

n ¼ e1 n ¼ e2

Insulator Conductor Conductor

h2; h3 (+) (+) (+)
ð�Þ
ðþÞ
ðþÞ

2
4

3
5 ð�Þ

ðþÞ
ðþÞ

2
4

3
5 ðþÞ

ð�Þ
ðþÞ

2
4

3
5

ðþÞ
ð�Þ
ð�Þ

2
4

3
5 ðþÞ

ðþÞ
ðþÞ

2
4

3
5 ðþÞ

ð�Þ
ðþÞ

2
4

3
5

ð�Þ
ðþÞ
ðþÞ

2
4

3
5 ðþÞ

ð�Þ
ð�Þ

2
4

3
5 ð�Þ

ðþÞ
ð�Þ

2
4

3
5

ð�Þ
ðþÞ
ðþÞ

2
4

3
5 ð�Þ
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pendicular to n are zero. The choice of v1 ¼ 0 (hard wall) again prevents a flux density of pressure and kinetic energy (Eq.
(32)) across the boundary. For B, all the components have (+) symmetry. The symmetries are given in Table 2 for this case
under the heading n ¼ e1 Conductor. The symmetry of J is not well determined, since from Ampere’s Law Eq. (27),
J ¼ $� B ¼
ð�Þ
ðþÞ
ðþÞ

2
64

3
75�

ðþÞ
ðþÞ
ðþÞ

2
64

3
75 ¼

ðþÞ
ð�Þ
ð�Þ

2
64

3
75; ð43Þ
with ð�Þ indicating a mixed symmetry. Fortunately, the momentum equation is not needed at the boundary ðv ¼ 0Þ, and
there are no derivatives of J in the equations. The authors have successfully used this boundary condition in simulations
of magnetospheric Alfvén waves [10,6,7], indicating that this boundary condition works despite the imperfect symmetries.

3.3. Hard wall perfect conducting boundary with n ¼ e2 (perpendicular to b0)

Again, we want the components of E perpendicular to n to be zero and the component v2 (parallel to n) equal to zero in
order that the flux density of energy (S in Eq. (32)) has no component across the boundary. In this case, all the symmetries
are consistent, as shown in Table 2. For a hard wall perfect conductor boundary with n ¼ e3, one can simply interchange the
symmetries of the second and third components.

4. Energy conserving boundary conditions for a hybrid code

Normalized hybrid code equations for two species, particle protons (p) and fluid electrons (e) [27], are written as
dvm

dt
¼ Em � gJm þ vm � Bm; ð44Þ

dxm

dt
¼ vm; ð45Þ

nei ¼ npi ¼
W
Vi

X
m

Sðxi � xmÞ; ð46Þ

Jpi ¼
W
Vi

X
m

vmSðxi � xmÞ; ð47Þ

Ji ¼ $� Bi; ð48Þ

vei ¼
Q
nei
ðJpi � JiÞ; ; ð49Þ

@pei

@t
¼ �c$ � ðveipeiÞ � ð1� cÞvei � $pei þ ðc� 1ÞgJ2

i ; ð50Þ

@Bi

@t
¼ �$� Ei; ð51Þ

Ei ¼ �vei � Bi þ gJi; ð52Þ
where m is the particle index, i is the grid index (possibly representing grid points on a multidimensional grid), the particle
weight W ¼

P
iV i

� �
=Nm;Vi is the volume of grid cell i, and Nm is the number of particles. The particle quantities are the par-

ticle position xm and the particle velocity vm. If the coordinates are curved, the particle acceleration equation Eq. (44) must
also include (centrifugal and Coriolis) inertial terms as discussed by Lipatov [16].

The normalized particle charge Q (normally unity) will be discussed below. Other quantities are fields evaluated on the
grid. Fields with a subscript m (like Em) are understood to be interpolated to the particle position like
Em ¼
X

i

EiSðxi � xmÞ ð53Þ
using the particle shape function Sðxi � xmÞ. The normalizations are similar to those of MHD except that time is normalized to
the inverse proton cyclotron frequency Xcp ¼ eB0=mp, where mp is the proton mass, and distances are normalized to c=xpp,
and where the proton plasma frequency xpp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0e2=ð�0mpÞ

p
, where �0 is the permittivity of free space.

The energy equation is
@

@t
E ¼ �

X
i

V i$ � S; ð54Þ

E ¼
X

m

Wjvmj2

2
þ
X

i

V i
pei

c� 1
þ jBij2

2

 !
; ð55Þ

S ¼ vei
cpe

c� 1
þ E � B

� �
: ð56Þ
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Here in Eq. (55), the particle energy (summed over m) does not easily separate from the field energy (summed over i), so we
have written the energy in nonlocal terms (in terms of sums, unlike Eq. (32)). We still need to have S � n ¼ 0 at the boundary
for energy conservation. In addition, we need to handle particle interactions at the boundary in an energy conserving way.
The particles are normally reflected at the boundary with the normal component of velocity ðvm � nÞ reversed [3]. Another
possibility is to reverse all components of the particle velocity upon reflection, or the normal component plus any compo-
nent within the boundary perpendicular to B [20]. For our purposes, we will assume that the particles are reflected when
they hit the boundary with only the normal component of velocity reversed. The reversal of a component of particle velocity
will be indicated by (�) symmetry.

Our boundary conditions for the hybrid code are shown in Table 3. They are quite similar to those we derived for MHD
(Table 2). For the insulator boundary at the boundary with n ¼ e1, the symmetries in the hybrid system are totally consistent.
This boundary condition was used in the simulation of flux bundle reconnection of Mandt et al. [19]. For the conductor
boundary with boundary normal across the magnetic field ðn ¼ e2Þ, the boundary conditions are consistent only if the par-
ticle charge Q in Eq. (49) has (�) symmetry. That is, Q ¼ 0 at the radial boundary. This reversal of the charge is consistent
with the reflection of the protons we have assumed at the boundary (see Fig. 1), and also with the fact that $ � E, proportional
to the charge density according to Gauss’s Law, has (�) symmetry at the boundary.

Fig. 2 shows the change in the total energy dE (from the beginning of the simulation) for a 2D simulation of electromag-
netic ion cyclotron waves in dipole geometry using conductor boundary conditions for both n ¼ e1 and n ¼ e2 (Table 3). The
electromagnetic ion cyclotron instability is driven by the temperature anisotropy, T? > Tk, of the ions. The simulation do-
main extends along the magnetic equator from L = 40 to 60 c=xpp away from the center of the Earth, and the central mag-
netic field line (at L ¼ 50c=xpp) extends in latitude to �45�. The grid resolution was 129 grid points in the parallel direction
and 33 in the perpendicular (along L) direction. (This simulation will be described further elsewhere.) The energy is defined
as in Eq. (55), except that it has been integrated over the system volume. Fig. 2 also shows the change in the magnetic energy
(term proportional to jBij2 in Eq. (55)) and the kinetic energy (term proportional to jvmj2 in Eq. (55)). The fact that the change
in the total energy is much smaller than the change in the individual energy terms dEB and dEK shows that the energy was
Table 3
Symmetries for energy conserving boundary conditions for a hybrid code.

Field n ¼ e1 n ¼ e2

Insulator Conductor Conductor

pe; h1;h2;h3 (+) (+) (+)
Q (+) (+) (�)
$ ð�Þ

ðþÞ
ðþÞ

2
4

3
5 ð�Þ

ðþÞ
ðþÞ

2
4

3
5 ðþÞ

ð�Þ
ðþÞ

2
4

3
5

B ðþÞ
ð�Þ
ð�Þ

2
4

3
5 ðþÞ

ðþÞ
ðþÞ

2
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3
5 ðþÞ

ð�Þ
ðþÞ

2
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3
5

Jpi; J ð�Þ
ðþÞ
ðþÞ

2
4

3
5 ðþÞ

ð�Þ
ð�Þ

2
4

3
5 ð�Þ

ðþÞ
ð�Þ

2
4

3
5

vei;vm ð�Þ
ðþÞ
ðþÞ

2
4

3
5 ð�Þ
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ðþÞ
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3
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Fig. 1. Particle reflection illustrated for a conductor boundary with boundary normal across the magnetic field ðn ¼ e2Þ. Particle A reflects at point R,
implying that there is an image particle with opposite charge B (rotating with the opposite sense of rotation) that crosses the boundary at point R and
becomes particle C.



Fig. 2. The change (from the beginning of the simulation) in the magnetic field energy dEB , the change in the kinetic energy dEK , and the change in the total
energy dE ¼ dEB þ dEK , versus time for a 2D hybrid code simulation of electromagnetic ion cyclotron waves in dipole coordinates. The starting magnetic
energy was 6.7 while the initial kinetic energy was 0.70. (The energies are volume averaged so that the magnetic energy would be unity if the magnetic field
were of uniform magnitude.)
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well conserved in this simulation; the small (slightly negative) change in the total energy can be reduced by using higher grid
resolution with a smaller time step.

5. Energy conserving boundary conditions for linear reduced MHD

Now we consider a simple set of linear reduced MHD (RMHD) equations
@Ak
@t
¼ �b0 � $/; ð57Þ

Jk ¼ �
1
B0

$ � $?
Ak
B0

� �
B2

0

� �
; ð58Þ

$ � 1
V2

A

@$?/
@t

 !
¼ B0 � $

Jkj
B0

� �
; ð59Þ
where the electromagnetic fields are
B? ¼ $� ðb0AkÞ ¼ $
Ak
B0

� �
� B0; ð60Þ

E ¼ �$/� b0
@Ak
@t

; ð61Þ
and the equations have been written in a form valid for curvilinear coordinates with b0 ¼ B0=B0 ¼ e1, but assuming
J0 ¼ $� B0 ¼ 0. The k and ? subscripts indicate components respectively parallel and perpendicular to the background mag-
netic field B0. We define Lk and L?, the parallel and perpendicular scale lengths. In Eqs. (57)–(61), Ak is normalized to B0L?,
and @=@t is normalized to VA0=Lk, and VA is normalized to VA0 ¼ VA at a particular location. Eq. (57) indicates that the parallel
electric field Ek ¼ b0 � E ¼ 0; Eq. (58) is Ampere’s Law for the parallel current Jk ¼ b0 � J with J ¼ $� B using Eq. (60) (and
J0 ¼ 0); and Eq. (59) expresses current continuity, where the left-hand side of the equation is the negative of the divergence
of the perpendicular current due to the polarization drift and the right-hand side of the equation is the divergence of the
parallel current Jkb0 (so that the divergence of the total current is zero).

Defining
A0 ¼ Ak
B0
; ð62Þ

J0 ¼
Jk
B0
; ð63Þ
we can rewrite Eqs. (57)–(59) as
@A0

@t
¼ � 1

B0
b0 � $/; ð64Þ

J0 ¼ � 1
B2

0

$ � B2
0$?A0


 �
; ð65Þ

$ � 1
V2

A

@$?/
@t

 !
¼ B0 � $J0; ð66Þ
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and Eqs. (60) and (61) as
Table 4
Symme

Field

B0;VA ,
h1;h2; h
/

A0

$

B

J0

v

E

B? ¼ $A0 � B0; ð67Þ

E ¼ �$/� B0
@A0

@t
: ð68Þ
The energy principle corresponding to Eqs. (64)–(66) is
@

@t
E ¼ �$ � S; ð69Þ

E ¼ j$?/j
2

2V2
A

þ B2
?

2
; ð70Þ

S ¼ B0J0/� $?A0
@A0

@t
B2

0 �
/

V2
A

$?
@/
@t
; ð71Þ
Note that j$?/j2=2V2
A ¼ qv2

E=2, where
vE ¼ ð�$/� b0Þ=B0 ð72Þ
is the E � B drift velocity. Note also that this form for the E � B drift has been assumed also in the polarization drift current in
Eq. (59) (which does not have E � dB).

5.1. Reduced MHD boundary conditions for n ¼ e1

First we consider the boundary crossed along the background magnetic field, that is, boundary normal n ¼ e1 ¼ b0. Energy
conserving boundary conditions for RMHD are summarized in Table 4. The insulator boundary condition 1 in Table 4 allows
an electric field within the boundary, but not a magnetic field. Therefore / can be nonzero within the boundary (!r2/ – 0
and r3/ – 0 within the boundary), but A0 must be zero within the boundary. The resulting boundary conditions are exactly
the same as those for the corresponding boundary condition in MHD (Table 2) except that from Eq. (72), v1 ¼ vk ¼ 0. A more
general set of RMHD equations including nonzero v1 [4,8] would have exactly the same set of symmetries as in MHD.

Now we consider a conducting boundary crossed in the e1 direction ðn ¼ e1Þ. In 3D ðr3 – 0Þ, the symmetries are again
mixed. To simplify the discussion, we consider the 2D case, r3 ¼ 0, for which the symmetries are consistent. Two dimen-
sional reduced MHD equations (with b0 ¼ e1) have been used in simulations of Auroral Alfvén waves by Refs. [23,17,22].
While the equations of these authors are more complicated than Eqs. (64)–(66), Eqs. (64)–(66) represent the fundamental
physics of Alfvén waves within the more complicated sets of equations. The symmetries for the 2D conducting boundary
with n ¼ e1 are shown in Table 4 (boundary condition 2). Note that
$ ¼
ð�Þ
ðþÞ
0

2
64

3
75 ð73Þ
indicates that the third component of $ is identically zero. Now a magnetic field is allowed within the boundary but not an
electric field, so A0 can be nonzero within the boundary but / ¼ 0 there. Because of this, Ek ¼ b0 � E has (+) symmetry (sym-
tries for energy conserving boundary conditions for linear reduced MHD.

n ¼ e1 n ¼ e2

1-Insulator 2-Conductor 3-Grounded 4-Ground/zero slope 5-Ground/zero 2nd derivative

(+) (+) (+) (+) (+)

3 (+) (+) (+) (+) (+)
(+) (�) (�) (+0)/(+) ð�Þ=ðd�Þ
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metry of A0 and r1/), but Ek ¼ 0 from Eq. (57), so we indicate the symmetry of E1 ¼ Ek as (+0) in Table 4. This notation de-
notes zero value with (+) symmetry (value / x2 at boundary coordinate x ¼ 0). Apart from this difference (we chose (�) sym-
metry for E1 in Table 2), the symmetries of the nonzero components are identical to those for MHD in Table 2.

5.2. Reduced MHD boundary conditions for n ¼ e2

Now we consider the boundary crossed when moving perpendicular to the magnetic field, n ¼ e2. In Sections 3 and 4 we
described a conducting boundary. The simplest way to create a conducting boundary in RMHD is to ground the boundaries so
that / ¼ 0 there and the symmetry of / is (�). Then since r1/ ¼ 0 within that boundary (e1 ¼ b0 is within the boundary
perpendicular to n ¼ e2), @A0=@t ¼ 0 from Eq. (64), so that the symmetry of A0 is also (�). This leads to a consistent set of
boundary conditions which is described in Table 4 under boundary condition 3. In a more general set of equations including
v1 ¼ vk [4,8], the symmetry of v1 would be (+) so that (as in MHD), the symmetry of v is the same as that of B (Table 2). Note
that in this case, the symmetry of v1 would be opposite to that of J0 ((�) in Table 4), as is also the case in MHD (Table 2). But
in the equations of Refs. [4,8], Jk is equal to the current of the protons minus that of the electrons (as it must be in reality),
qpnpvkp � enevke. This apparent contradiction (opposite symmetry for vk and J0 / Jk) can be resolved if the charge has (�)
symmetry as we assumed for the hybrid code. Again, the assumption that there is no charge at the boundary is consistent
with $ � E ¼ 0, which is true for the conducting boundary. The double ground radial boundary condition has been used by
Streltsov and Lotko [23].

While grounding the boundary is a simple way to implement a conducting boundary, constraining the value of / at both
ends of the simulation alters the Alfvén wave dynamics so that an Alfvén wave energy is no longer purely guided along the
magnetic field [9]. (The negative effect of this boundary condition did not invalidate the main results of Streltsov and Lotko
[23] because they were concentrating on fine scale structure that develops near the ionospheric boundary due to other
mechanisms.) For ease of discussion, we now consider q and r to be the (possibly curvilinear) coordinates in the e1 and e2

directions, respectively. The coordinate r will play the role of x that we used previously; that is, increasing values of r will
cross the boundary. To solve the problem mentioned above (incorrect Alfvén wave dynamics), we can use a slightly different
boundary condition for the low and high end of the r boundary. Because Eq. (66) must be inverted to get /, and only the
perpendicular gradient of / appears in Eq. (66), the solution for / includes an arbitrary constant. Because of this, we set
/ ¼ 0 at the low end of the r boundary, r ¼ r1. Then from Eq. (57), Ak is also zero there. We will not require that / ¼ 0 at
the high end of the r boundary, r ¼ r2, for boundary conditions 4 and 5. With a gauge transformation, it is possible to trans-
form to a different U and Ak such that U ¼ Ak ¼ 0 at r ¼ r2. This transformation is U! U� @w=@t and Ak ! Ak þ b0 � $w with
w ¼

R tdt0Uðq; r ¼ r2; t0Þ. Thus the boundary conditions at r ¼ r1 and r ¼ r2 are physically equivalent for all the boundary
conditions.

To indicate the different way this boundary is handled at r ¼ r1 and r ¼ r2, the symmetry of / in Table 4 is listed for
boundary condition 4 as (+0)/(+) where the ‘/’ separates the boundary conditions at r ¼ r1 and r ¼ r2, respectively. This
means that at the r1 boundary, / ¼ 0 but with (+) symmetry, while at the r2 boundary, the value of / is allowed to float with
(+) symmetry. The symmetries of the other fields are given in Table 4. This boundary condition is partly like a conductor (the
components of E within the boundary are zero) only because of the 2D approximation. The symmetries of E2 and B3 are those
of an insulator. The symmetries of the fields are consistent only in 2D.

Boundary condition 5 (Table 4) is more like that of the MHD conducting boundary in Table 2. For this boundary condition,
the notation ðd�Þ indicates that the variations in the r direction are antisymmetric about a nonzero value. This means that /
can be nonzero at r ¼ r2, but /ðq; rÞ � /ðq; r ¼ r2Þ has (�) symmetry. This boundary condition leads to zero value for
@2/=@dr2 / @Er=@r, which is the MHD boundary condition for Er ¼ E2 (Table 2). The symmetries of the other fields are also
consistent with MHD. (One must apply the d� symmetry to A0 rather than A, or the product Að1=B0Þ in Eq. 58 will have the
wrong symmetry before the derivative in $? is taken.)

There is a subtle problem implementing boundary condition 5. With the symmetries in Table 4, the right-hand side of Eq.
(66) will have (�) symmetry and zero value at r ¼ r2, and Eq. (66) will turn into @2/=@dr2 ¼ 0. But this is exactly equivalent
to the boundary condition for /, and Eq. (66) yields no new information to determine / at r ¼ r2 [the solution for / is sin-
gular]. One possible way to deal with this is to drop the (+) symmetry for the equilibrium quantities B0;VA;h1;h2, and h3. The
energy conservation will not then be exact. If we understand them correctly, researchers at the University of Alberta have
chosen ðd�Þ for the symmetry of A0, but (+) for the symmetry of / [Robert Rankin, private communication, 2007].

6. Summary and discussion

We have shown how to implement energy conserving boundary conditions using exact symmetries at the boundaries.
This method can be used even for a curvilinear coordinate system if the symmetries are exact. (When equations do not have
exact symmetries, it is usually better to let the equilibrium quantities and scale factors be continuous at the boundary.) We
demonstrated how to work out the symmetries of the various fields for MHD, a hybrid code, and for linear reduced MHD.

In Section 2, we mentioned that perfect (+) or (-) symmetries across a boundary imply that all odd or even derivatives are
equal to zero. One might be concerned about the high order derivatives which are implied by multiple ghost grid points (or
cells) beyond the boundary. Analytically, either a Dirichlet or Neumann boundary condition is sufficient at boundaries. If we
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specify only that the slope is zero at a boundary, but have more than one ghost grid point value beyond that boundary, there
is an infinite number of ways to adjust the ghost values and still have zero slope. Given this flexibility, to extend the ghost
grid point values using symmetry seems a reasonable thing to do. And symmetries provide a sufficient condition for energy
conservation (as far as the boundary is concerned). But such symmetries are probably not the only way to achieve energy
conservation (not a necessary condition for energy conservation). One could set the ghost values in different ways, perhaps
to set high order derivatives to zero. Alternately, one could use lower order one-sided derivatives requiring fewer input val-
ues as the boundary is approached. This would eliminate the extra degrees of freedom, but the energy would likely not be
conserved. Ultimately, one always makes a choice about how to handle the boundaries that involves certain assumptions,
and may not be totally realistic. For instance, the assumption of periodic boundary conditions assumes exact periodicity that
is unlikely in a real system. But we make a choice to use certain boundary conditions that has the properties that we desire. If
exact energy conservation is desired, then the symmetry boundary conditions described here are one way to achieve it.
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